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Four-stream solution for atmospheric
radiative transfer over a non-Lambertian surface

Shunlin Liang and Alan H. Strahler

An analytical model characterizing the atmospheric radiance field over a non-Lambertian surface divides

the radiation field into three components:
The first two components are calculated exactly. A 3-four-stream

multiple-scattering radiance.

unscattered radiance, single-scattering radiance, and

approximation is extended to calculate the azimuth-independent multiple-scattering radiance over a
non-Lambertian surface, which is modeled by a statistical bidirectional reflectance distribution function

(BRDF).

Accuracy is assessed with respect to the exact results computed from a Gauss—Seidel iterative

algorithm. Experiments comparing the results obtained with Lambertian and non-Lambertian surfaces
show that incorporating the BRDF into the four-stream approximation significantly improves the
accuracy in calculating radiance as well as radiative flux.
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1. Introduction

Most land surfaces are strongly anisotropic reflectors
at optical wavelengths. The primary source of this
anistropy is the three-dimensional structure of the
surface. A number of instruments that can re-
motely sense the anisotropy of the land surface are
now available or are in development. Examples are
the Advanced Solid-State Array Spectroradiometer,’
a pointable, aircraft-mounted imaging spectroradiom-
eter, and the Multiangle Imaging Spectroradiometer
(MISR),? proposed as part of NASA’s Earth Observ-
ing System. To retrieve ground structural informa-
tion effectively from multiangle remotely sensed data,
which is a requirement for global climatic modeling or
ecosystem studies, we need to develop simple and
accurate analytical models that characterize the angu-
lar atmospheric radiation field over a non-Lamber-
tian surface.

Radiative transfer theory is a powerful tool to
model atmospheric radiation characteristics. Many
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numerical models have been reported in the litera-
ture.>7 Unfortunately these models are undesirable
for inversion purposes because they require extensive
calculations. To retrieve surface structural informa-
tion or directional reflectance, optimum algorithms
that involve hundreds or even thousands of such
forward calculations are frequently used. Fast algo-
rithms are required for this purpose. The two-
stream approximation, which is simple to calculate
and is widely used in radiative flux transfer modeling,
recently has been extended to calculate the angular
radiance field when considering a non-Lambertian
surface as the lower boundary condition.® Two-
stream Kubelka-Munk theory has also been extended
to apply to the scene-radiation modeling.® However,
if high accuracy is required, it is desirable to explore
new models that are still simple but more accurate.
The four-stream approximation, used in radiative
flux calculation over a Lambertian surface,19-12 is a
good candidate. A procedure for calculating the
angular radiance of the atmosphere over a non-
Lambertian surface by means of the four-stream
approximation provides the focus of this paper.

To evaluate the angular characteristics as accu-
rately as possible, the radiation field is divided into
three components: solar radiance that is unscat-
tered by the atmosphere, single-scattering radiance,
and multiple-scattering radiance. The first two com-
ponents can be calculated exactly. Only the multiple-
scattering component is approximated by the use of
the d-four-stream solution. The accuracy of this

20 August 1994 / Vol. 33, No. 24 / APPLIED OPTICS 5745



approximation for aerosol atmospheres is checked
with the Gauss—Seidel iterative code.”

2. Decomposition of the Radiation Field

For a plane-parallel homogeneous atmosphere in the
absence of polarization, the radiative transfer equa-
tion can be written as!?

al(r, Q)
aT

" = I, m—if PO, Q)(r, V')A, (1)
4 i

subject to the boundary conditions

I{0, ) = 3(Q ~ Q4)vF,

I(7, ) =f R, Q) |17, ')A,
2m

where o is the single-scattering albedo, Fy is the
extraterrestrial irradiance, P({)’, Q) is the phase func-
tion, 3(°) is the Dirac delta function, R(Q)', ) is the
ground bidirectional refiectance distribution function
(BRDF), and 7 is the optical depth varying from zero
at the top of the atmosphere to 7, at the bottom of the
atmosphere. The direction Q(p, ¢) characterizes azi-
muthal angle ¢ and zenith angle 8 = cos (), for
which a negative w indicates the downward direction
and a positive p indicates the upward direction. ),
denotes the solar incident direction with the zenith
angle 8, = cos™!(|Kg|) and the azimuth angle &,.
Because | ug| is so frequently below, it is replaced with
o for convenience.

The scattering properties of the atmosphere de-
pend on Rayleigh and aerosol particles. Thus the
scattering-phase function can be defined as a weighted
average of individual scattering-phase functions at a
specific scattering angle:

V) 14
P(\I’) — pr( )TV‘ + pa( )Ta R

T+ T,

with the constraint fg P(W)sin ¥d¥ = 1. Here ¥
is the scattering angle, dependent on the incident
zenith angle, the viewing angle, and the azimuth
angle difference. 7, and 1, are the molecular optical
depth and aerosol optical depth, respectively. The
one-term Henyey—Greenstein function is used as the
aerosol phase function.

It is well known that no analytic solution to Eq. (1)
can be obtained. To incorporate a non-Lambertian
surface into the four-stream approximation and ob-
tain a more exact angular dependence of the radiance,
we divide the radiation field into three components:
unscattered solar radiance (us), single-scattering radi-
ance (ss), and multiple-scattering (ms). The multiple-
scattering radiance I™s(7, ) is assumed to be azimuth-
ally independent. For the us and ss components, the
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formulas are quite simple. When p > 0,
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3. Four-Stream Approximation for Multiple Scattering

Because the formulas for the multiple-scattering
radiance cannot be explicitly derived, here we use the
four-stream approximation. If the unscattered radi-
ance from Eq. (1) is decomposed, the corresponding
equation for the scattering radiance will have one
more source term contributed by the unscattered
radiance. The azimuth-independent radiative trans-
fer equation for the total scattering radiance is

dlfz, p) _ o[ Al
g e -5 _lp(u,u)(nu) 1
2F | s 4
- 4 OP(M, _“'())exp - o ’ ( )
subject to the boundary conditions
[0, p) =0, n <0,
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where p(p, ') and r(p’, 1) are the azimuth-indepen-
dent phase function and the ground BRDF, respec-
tively. They are defined as
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Here P, are the Legendre polynomials of order ! and
are given in Appendix A. w,; can be determined by

we thus obtain the final matrix equation for the
coefficients L;:

20+ 1 L=A"B, (9
o=y j plx)Pyx)dx.
-1 where
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Because of the presence of the integration term on
the right-hand side of Eq. (4), no closed-form solution
of Eq. (4) can be derived. Below, a two-stage ap-
proach is developed. In the first stage, the conven-
tional four-stream approximation is extended to in-
clude a non-Lambertian boundary surface, yielding
radiances at four Gaussian quadrature points. In
the second stage, we derive radiances at arbitrary
directions by approximating the integration term in
Eq. (4) with the four-point formula. After the total
azimuth-independent scattering radiance is calcu-
lated, the multiple-scattering component is then de-
rived by subtraction of the azimuth-independent
single-scattering radiance.

The four-stream discrete-ordinate solution to Eq.
(4) at arbitrary level 1 is given by!%14

2

2 x)exp(—k;7) + L_;W,(—x)exp(k;7)]
J=1
+ Z(x)exp(— M_o) : (7)

where x = +p; (0.3399810), +u, (0.8611363) and
functions Wj(x), Z(x), and &; are known!? and are given
in Appendix A. L; are coefficients to be determined
based on the boundary conditions

10,x) =0 x = —pyp

sy

Iiro, %) = 3, 52127 2

~ M, X )I(TO, _M'j)

To
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The explanation of the constant 0.52127 can be found
inRef. 11. a,;(0.6521452) and a, (0.3478548) are the
Gaussian weights. Substituting Eqs. (8)into Eq. (7),

[-|” denotes the matrix transpose, and the correspond-
ing parameters are defined as

, T
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.
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The inverse of the matrix A-! can be calculated
with any numerical calculation package. However,
to avoid an unnecessary iteration process, an explicit
formula for L, is provided in Appendix B.

Now we need to find the solutions for arbitrary
directions. Because the radiances at four Gaussian
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quadrature points have been determined, one natural
way of finding these solutions is to approximate the
integration term in Eq. (4) with the four-point for-
mula. Substituting Eq. (7) into Eq. (4), we show that
Eq. (4) becomes an ordinary differential equation:

diI(7, p)
M dr

- I(T’ M)
2

© 2
= -5 2 u,w{E[LW (hy)exp(—k;7)

- J=1

+ LW~ exp(k;7)] + Z(m)exp(— i)]

°F = 10
T4 0Pk, —wolexp| — o ’ (10)
with boundary conditions (5). Solving Eq. (10), we
have
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forp > Oand p < O but || # we. For the case of
p < Oand |p| = g, the radiance can be calculated:

—LW(p
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The coeflicient C(u) needs to be determined accord-
ing to the boundary conditions (5). When p < 0 and

] = po,

® - 2 LW () | L Wi=p)
_Zwuo|  wFouop(p, — po) (13)
B+ o 4 + o)
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where I(7¢, u} is given in Egs. (5).

Thus the multiple-scattering radiance with azi-
muth independence can be obtained as

™5z, w) = I, p) — I, w), (16)

where I*(t, u) is the azimuth-integrated single-scat-
tering radiance, which has formulas the same as Egs.
(2) and (3) except that P(-) will be replaced with p(-).

4. Statistical BRDF of Land Surfaces

In a previous paper we provided a statistical BDRF
that well represents measured directional reflectance

of various ground covers.® This BRDF model can be
expressed by
R(Qy;, Q) = filQ;, Q) + fo(, Q), (17)

where f| is a bowl-shaped component and f; is a
hotspot (enhanced backscattering) component:

f1(€, Q) = by + 50,8 cos(d — ;)
+ 5,0,20% + b4(8,2 + 62) (18)
f2(€, Q) = ag exp|—a; tan(m — a)].

In these expressions, « is the phase angle between the
incident direction (p;, ¢;) and the outgoing direction
(m, d). 6, = cos™L{;); 8 = cos~}w); 8; and &; are the
incident zenith angle and the azimuth angle, respec-
tively; and 6 and ¢ are the viewing zenith angle and
the azimuth angle, respectively. b, and a, are coeffi-
cients that fit functions f; and f;. If the viewing
direction coincides with the solar incidence, then o =
w and f3() approaches the local maximum.

The plane albedo A(w;) and the spherical albedo p



based on the present model can be calculated with

Aly) = [, Q) + £, Q)]ndQ,

27
0

2 A(Mi)l “‘i'dPLi; (19)

-1

©
I

respectively, where 2w~ represents the lower hemi-
sphere.

5. Delta Scaling

It is also possible to incorporate a d-function adjust-
ment to account for the forward-scattering peak. 111215
If a fraction of the scattering energy fis considered to
be in the forward peak, the above solution can still be
used as long as the following transformations are
made in the coefficients:

70— 7o' = (1 — of )7,

, (1 = foy
wel T ar
g—>g’=§%];’ (20)

where g is the asymmetry parameter in a one-term
Henyey—Greenstein function. Although various
choices of f are possible,!® f = w,/9 has been used in
the calculations below so that o,/ = 0 for [ >
4. Notice that the scaling process is only for the
calculation of multiple scattering.

6. Data Analysis

To validate the 3-four-stream formulas derived in
Section 5, we calculate the upwelling radiance at the
top of the aerosol atmosphere much more exactly
with our Gauss—Seidel algorithm.” This Gauss—
Seidel algorithm agrees with the discrete-ordinate
algorithm,® with a relative error of 0.1-0.5% for the
case of a Lambertian boundary surface. A major
advantage of the Gauss—Seidel algorithm is that any
form of BRDF for the non-Lambertian boundary
surface can be easily incorporated without any extra
computational cost.” In our trials the relative
error is defined as [I(1, Q) — I(7, Q)]/I(1, Q) X 100%,
where I(7,Q) and I(1, Q) are calculated with the
Gauss—Seidel algorithm and the §-four-stream ap-
proximation, respectively.

The parameters characterizing the ground BRDF
are listed in Table 1. Both sets of parameters (albe-
dos 0.1 and 0.3 ) are fitted from the ground-measured

Table 1. Parameters for the Statistical BRDF

Parameter

Albedo bo b1 bz b3 ag aj

0.10 -0.37532 0.00895 0.00275 0.01240 0.40356 0.03900
0.30 0.01277 0.00543 0.00064 0.02011 0.08012 0.41800

directional reflectance of a dense soybean canopy!é in
the green (500-600-nm) and the near-infrared (800-
1100-nm) bands. However, these coefficients have
been normalized to produce the specific albedo.
Figure 1 illustrates the BRDF at an incident zenith
angle of 30° and an azimuth angle of 0°. In the
backscattering direction there is a local maximum,
which is usually called the hotspot peak or the
backscattering enhancement.

In the following calculations, only an aerosol atmo-
sphere with a small optical depth is considered. If
the optical depth is large, say, greater than 0.5, it is
quite difficult to determine ground properties from
satellite or aircraft imagery quantitatively. In prac-
tice, images that are from turbid atmospheres will not
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Fig. 1. Illustration of the BRDF for the non-Lambertian surface.
The incident zenith angle is 30°, and the azimuth angle is 0°. (a)
Albedo 0.1, (b) albedo 0.3. BRDF parameters are listed in Table 1.
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Fig. 2. Relative errors of the upwelling radiance in the principal
plane with the 5-four-stream approximation. (a) Albedo 0.1, (b)
albedo 0.3. Aerosol asymmetry parameter 0.75, single-scattering
albedo of aerosol 0.96. The incident zenith angle is 30°, and the
azimuth angle is 0°.

be used. Calculations with a Lambertian surface
reflectance derived from the BRDF-integrated albedo
are also implemented for comparisons, which provide
information about the errors resulting from a Lamber-
tian assumption for a non-Lambertian surface.
Figure 2 illustrates the relative errors of the up-
welling radiance at the top of the atmosphere with the
3-four-stream approximation viewed in the principal
plane. Figure 2(a) corresponds to the low-albedo
(0.1) surface, and Fig. 2(b) corresponds to the high-
albedo surface (0.3). The aerosol asymmetry param-
eter is also different: 0.65 in Fig. 2(a) and 0.75 in
Fig. 2(b). From Fig. 2 we can see that for the
non-Lambertian surface, a Lambertian assumption
can lead to large errors, especially in the forward-
scattering direction and in clearer atmospheres.
When the aerosol optical depth is between 0.05-0.25,
the 3-four-stream approximation yields increasing
errors as optical depth increases. The approxima-
tion seems to underestimate the upwelling radiance
in all cases, which is consistent with the calculations
of Liou ef al.12 in the Lambertian case. At an optical
depth of 2.0, the model overestimates the upwelling
radiance in the backscattering direction and underes-
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timates the upwelling radiance in the forward direc-
tion. The reason is probably the azimuth-indepen-
dent approximation for the multiple-scattering
component. In this case multiple scattering be-
comes large and there is stronger forward scattering
than backward scattering. At this optical depth, it
can also be observed that the Lambertian assumption
produces radiances close to the non-Lambertian and
close to the Gauss—Seidel results as well. This is due
to the strong multiple interactions between the atmo-
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Fig. 3. Relative errors of the upwelling radiance with the 3-four-
stream approximation, displayed as a three-dimensional surface in
the three-dimensional coordinate. The optical depth is 0.15. (a)
Albedo 0.1, (b} albedo 0.3. The other parameters are the same as
inFig. 2. The zenith and azimuth viewing angles are resolved into
x and y coordinates, respectively, and the height of the surface
displays the percentage error at that viewing position. The plane
y = 0 is the principal plane.
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sphere and the surface. Notice that if the viewing
angle is smaller than 30°, the d-four-stream approach
predicts the upwelling radiance with a relative error
smaller than 10% over the full range of the optical
depths.

Relative errors outside of the principal plane for the
3-four-stream approximation with the non-Lamber-
tian surface are presented in Fig. 3 as a three-
dimensional graphic. Because the errors are asym-
metrical in azimuth, an azimuth-dependent approx-
imate solution for the multiple-scattering radiance
should be developed if higher accuracy is sought.

Figure 4 presents the effects of the improved
d-four-stream approximation on the calculation of the
upwelling radiative flux. Although the improved
3-four-stream approximation underestimates the flux
a little, it obviously has a higher accuracy than the
Lambertian assumption. The relative error is
smaller than 5%.

One of the major objectives of this study is to
develop analytical atmospheric radiative transfer mod-
els for multiangle remotely sensed data, such as the
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Fig. 5. Effects of the assumption of a Lambertian surface on
upwelling radiance at the MISR viewing positions calculated with
the Gauss—Seidel algorithm. Albedo 0.3, aerosol asymmetry pa-
rameter 0.75, single-scattering albedo of aerosol 0.90, uy = 0.81.
The forward observation plane lies in ¢ + 48°, and the aftward
observation plane lies in &g + 132°.
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Fig. 6. Comparison of the upwelling radiance in the MISR

viewing angles calculated with the Gauss—Seidel algorithm and

with the 3-four-stream approximation. Aerosol asymmetry param-

eter 0.65, single-scattering albedo of aerosol 0.94. The other

parameters are the same as in Fig. 5.

Multiangle Imaging Spectroradiometer (MISR). The
MISR consists of nine cameras, of which four point in
the forward direction, four point in the aftward
direction, and one points in the nadir direction.
Figure 5 illustrates the effects of the assumption of a
Lambertian surface on the upwelling radiances at
nine MISR directions (latitude 30°, 21 March) calcu-
lated with the Gauss—Seidel algorithm. In the case
of the non-Lambertian surface, the upwelling radi-
ance has a larger angular variation than in the
Lambertian case. Furthermore, the Lambertian as-
sumption produces larger errors at small optical
depths. Because we are more interested in the clear
atmosphere case for remote sensing of Earth re-
sources, the proper incorporation of the non-Lamber-
tian surface into the atmospheric radiance transfer
formulation is of great importance.

Figure 6 compares the upwelling radiance calcu-
lated with the Gauss—Seidel algorithm and the four-
stream approximation at nine MISR directions (lati-
tude 30°, 21 March) with two aerosol optical depths.
The four-stream approximation overestimates the
upwelling radiance in forward directions to some
degree and underestimates the upwelling radiance in
aftward directions somewhat as well. Note that the
forward-aftward plane, which is controlled by the
planned orbit of the Earth Observing System AM
platform, is not in the solar principal plane. How-
ever, the four-stream non-Lambertian approximation
still fits the Gauss—Seidel numerical solution much
better than a Lambertian model.

From the above results, it can be concluded that
incorporating ground BRDF into the analytical 3-four-
stream formula can significantly improve the accu-
racy of the upwelling radiance calculation for a
non-Lambertian boundary surface.

7. Discussion and Conclusion

The conventional four-stream approximation for ra-
diative flux has been extended to calculate the angu-
lar radiance distribution over a non-Lambertian sur-
face. The Gauss—Seidel numerical code is applied to
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examine the accuracy of the improved four-stream
algorithm. The results show that the new model
predicts the radiance as well as radiative flux quite
well. The Lambertian assumption could lead to
large errors for non-Lambertian boundary conditions.
The new four-stream algorithm predicts the up-
welling radiance at small viewing angles better than
at large viewing angles. However, this may not be
much of a disadvantage, because most existing and
planned remote sensors for Earth resource investiga-
tions are nadir viewing or view in the near-nadir
directions.

The four-stream model is very computationally
efficient. We compared the four-stream code with
the Gauss—Seidel code on a SPARC-10 workstation
with the same set of parameters (see Fig. 6). The
Gauss—Seidel code took approximately 14.45 s to
calculate radiance at 64 directions, but the four-
stream code took approximately 0.08 s.

The science community strongly desires efficient
algorithms for quick calculations. LOWTRAN and 6S
have been widely used for remote sensing and environ-
mental optics, but both are based on two-stream
approximations. Although no comparisons with
LOWTRAN or 6S are implemented in this paper, the
four-stream algorithm should improve the approxima-
tion of multiple scattering. In some cases such as
atmospheric correction of satellite imagery, approxi-
mate models are suitable if atmospheric parameters
are empirically estimated. We also notice that in
some cases the accuracy of the present model is not
satisfactory, and further improvements are still
needed. For example, in the present formulation,
the multiple-scattering radiance is assumed to be
azimuth independent. For a clear atmosphere, mul-
tiple scattering usually is asymmetric in the azimuth
direction. To improve the accuracy of the present
algorithm, further research that considers the azi-
muthal dependence of multiple scattering is required.
Fourier transformation cbviously is one possible tech-
nique for this purpose.

A desirable objective for remote sensing is the
retrieval of the ground BRDF from multiangle re-
motely sensed data. Further research relating to
the present modeling effort in the near future will
explore the possibility of retrieval of the BRDF,
provided that atmospheric parameters are known.
The important issue is to observe the effects of the
prediction errors of the four-stream model on the
BRDF retrieval and to test the sensitivity of the
model to various possible noise sources.

Appendix A: Ancillary Functions

1 3
Wiale) = 757 & orkilkioPix),
F 2 _ 2 2 _ 2
Zix) = Pof'o (M Ho®) (1o Bo?)

4(1*0 + x) P~12M22(1 - k12P~02)(1 - kzzl-toz)
3 1

X D, wi (_)Pz(x)-
=0 Mo
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The Legendre polynomials and ¢ functions for an
argument x are listed as follows:

Py(x) = 1,
Pl(x) =X,
1
Pyx) = 5 (3x* = 1),
1
Pyx) = 5 (52" — 3x),
7 3
Pyx) = pra(x) - sz(x),
go(x) = 13
(1- wo*)
Glx)=—-—1—
(38— w*)(1 - w*) 1
flx) = s~ 3
Eolx) = — (5 — wo*)(3 ;xc:l*)(l — wo¥)
5 — wo* + 4(1 — wg*)
* 6x '

The eigenvalues &, and &, can be determined from

b 1
P2 = — — + — 2 _ 4c)1/2
5 T 5 (0% —4e)
where
altl -1 Qoty — 1
= + ?
T TP
1- gty — agly 4 alt1, aztzl
c = + )
TTr T B’
(1)2*

to = w* + 0 *(1 — wg*uyg — TPZ(M'LZ)
0.)3*

6 (5 = @o*) + 4(1 — wp*)]py 2P3(12),

1
to = 2 (8 = 0,*)(1 — @o*)[0e*Py(p; 2)

(1)3*

+ 3 (5 — wa*)p1 2Ps(y2)]-

o;* can be determined by the following:
w* = woy.
If 5 scaling is used, then

o* - f(2l + 1)
1——f.

w* = w =



Appendix B: Explicit Solution of a Four-Dimensional
Linear Equation Set

Suppose that we need to solve this set of equations:
[a; a;, a; a,]x = b,

where

a, = [ay; @5 a5 a4,
@12 Qoo A3z Ay,
]
J

T

k3

T

Q14 Q94 Q34 Ayy

’

[
[a13 azs Q33 Qs
|
[

x4]T’

[bl bZ bS b4]

X X9 X

It follows that
4,

xk=—5

A

where
A, =|b a;a; a,f,
A, =|a; b az a,,
Ay =|a;a; b a,,
A, =|a;a; a3 b|,
A = |a, ay a3 a4/,

and where || is the determinant of the 4 X 4 matrix.
The determinants can be easily calculated, for in-
stance for A, as follows:

A =auMyy - agMy + a3 My, — ag My,
where

Qgp Qg3 A3y Q13 Q13 Qg
M, ={Gs2 Q33 Q34 , M, =las; as ag4f,

Qg Qg3 Qyy Qya Q43 Qyq

Q12 Q13 Ay Q12 Qi3 Quu
M;, = [G22 Qg3 Gy, M, = [Ga2 Qa3 Qo4 ,

Qg2 Q43 Ay Q32 Q33 Qg4

and the determinant of each 3 x 3 matrix can be
explicitly calculated from elementary formulas.
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